Alberto Ferrero

Immagine Alberto Ferrero

Prenotazioni

Nome
Nascondi
Data
Nascondi
Luogo
Nascondi
Descrizione
Nascondi
Apertura prenotazioni
Nascondi
Chiusura prenotazioni
Nascondi
Studenti sufficienti il 14/2 che rifiutano il voto (Gruppo C)1 gennaio 2017, 00:0020 febbraio 2017, 09:1024 febbraio 2017, 23:55
Iscrizione alla prova orale secondo appello sessione invernale (Gruppo C)1 gennaio 2017, 00:0020 febbraio 2017, 09:2024 febbraio 2017, 00:00
Appello modulo di Matematica gruppo C20 gennaio 2017, 10:30Ancora da stabilireAppello modulo di Matematica gruppo C16 gennaio 2017, 23:55
Studenti sufficienti il 20/1 che vogliono rifare l'esame (Gruppo C)26 gennaio 2017, 18:00Studenti sufficienti il 20/1 che vogliono rifare l'esame (Gruppo C)26 gennaio 2017, 18:0031 gennaio 2017, 18:00
Iscrizione alla prova orale del 3 febbraio (Gruppo C)3 febbraio 2017, 00:00Da stabilireIscrizione alla prova orale del 3 febbraio (Gruppo C)26 gennaio 2017, 17:3531 gennaio 2017, 23:55

Corsi

Prerequisiti: i contenuti del corso di Analisi Matematica 1

Programma del corso: Punti stazionari e punti di estremo per funzioni di più variabili: formula di Taylor; matrice hessiana. Teorema della funzione implicita e teorema di inversione locale. Cenni alle varietà differenziabili. Teoria della misura secondo Peano-Jordan: funzioni semplici, funzioni integrabili, linearità e monotonia dell'integrale, formule di riduzione. Integrabilità di parte positiva, parte negativa e valore assoluto; misura di un insieme mediante integrazione della funzione caratteristica; additività della misura. Cambiamento di variabili nell'integrale multiplo. Curve regolari e loro lunghezza, integrali curvilinei e loro proprietà. Forme differenziali e loro primitive, integrale di una forma differenziale lungo un cammino. Condizioni necessarie e/o sufficienti per l'esistenza di primitive. Superfici in \(\mathbb{R}^3\) e in \(\mathbb{R}^n\) . Misura di una superficie, integrali superficiali. Integrali dipendenti da un parametro. Teorema della divergenza, formule di Gauss-Green, teorema di Stokes. Equazioni differenziali ordinarie e problema di Cauchy; equazione integrale di Volterra. Teorema locale di esistenza e unicità della soluzione del problema di Cauchy sotto la condizione di Lipschitz. Prolungamento di soluzioni; esistenza globale. Sistemi differenziali lineari; spazio delle soluzioni; metodo di variazione delle costanti. Equazioni differenziali lineari di ordine n a coefficienti costanti.

Obiettivi: la conoscenza delle principali proprietà delle funzioni reali di più variabili, con particolare riferimento al calcolo differenziale e integrale, di volume, di linea e di superficie; la conoscenza delle problematiche legate alle equazioni differenziali ordinarie; la capacità di applicare dette conoscenze nella risoluzione di problemi ed esercizi.

Metodo valutazione: prova scritta e orale sul programma svolto.


Categoria Archivio Storico / Didattica A.A. 2013/2014 / Dipartimento di Scienze e Innovazione Tecnologica / Corsi di laurea triennale / Matematica e applicazioni

Il corso tratta gli aspetti di base dell'analisi matematica. Gli argomenti principali sono:

  1. Numeri razionali e reali.
  2. Limiti per una funzione di variabile reale.
  3. Funzioni continue.
  4. Successioni.
  5. Derivate e loro applicazioni.
  6. Integrali per funzioni di una variabile.
  7. Serie numeriche.
  8. Successioni e serie di funzioni.
  9. Funzioni di più variabili.

Prerequisiti: padronanza degli argomenti trattati nel precorso e nel corso di Matematica di Base.


Categoria Archivio Storico / Didattica A.A. 2010/2011 / Facoltà di Scienze Matematiche, Fisiche e Naturali / Matematica e applicazioni

Il corso inizia con alcuni complementi relativi all'integrazione di funzioni di più variabili reale. Successivamente si esaminano le nozioni di curve e di superfici e il problema della determinazione dei potenziali dei campi conservativi. Infine, vengono presentati i classici teoremi di Gauss-Green e di Stokes. Il corso è rivolto agli studenti del corso di laurea in Matematica e Applicazioni ed è seguito anche dagli studenti del corso di laurea in Fisica come Analisi Matematica III.


Categoria Archivio Storico / Didattica A.A. 2008/2009 / Facoltà di Scienze Matematiche, Fisiche e Naturali / Matematica e Applicazioni

Nella parte iniziale sono richiamate alcune nozioni relative agli spazi metrici, alle successioni e alle serie (di numeri e di funzioni). Vengono quindi affrontati alcuni argomenti relativi alle funzioni di più variabili, sia dal punto di vista teorico che delle applicazioni.


Categoria Archivio Storico / Didattica A.A. 2008/2009 / Facoltà di Scienze Matematiche, Fisiche e Naturali / Matematica e Applicazioni